• 2022-09
  • 2022-08
  • 2022-07
  • 2022-06
  • 2022-05
  • 2022-04
  • 2022-02
  • 2021-03
  • 2020-08
  • 2020-07
  • 2020-03
  • 2019-11
  • 2019-10
  • 2019-09
  • 2019-08
  • 2019-07
  • br Charfi S El Ansari


    Charfi, S., & El Ansari, M. (2018). Computer-aided diagnosis system for colon abnor-malities detection in wireless ABT-888 endoscopy images. Multimedia Tools and Applications, 77(3), 4047–4064.
    Charisis, V. S., & Hadjileontiadis, L. J. (2016). Potential of hybrid adaptive filtering in inflammatory lesion detection from capsule endoscopy images. World Journal of Gastroenterology, 22(39), 8641.
    Demanet, L. (2008). The curvelet organization.
    Eid, A., Charisis, V. S., Hadjileontiadis, L. J., & Sergiadis, G. D. (2013). A curvelet-based lacunarity approach for ulcer detection from wireless capsule endoscopy images. In Computer-based medical systems (CBMS), 2013 IEEE 26th international symposium on (pp. 273–278). IEEE.
    Fawcett, T. (2004). Roc graphs: Notes and practical considerations for researchers.
    Gould, H., Tobochnik, J., & Wolfgang, C. (2005). An introduction to computer simula-tion methods: Applications to physical systems ((3rd edition)). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
    Hoshen, J., & Kopelman, R. (1976). Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm. Physical Review B, 14(8), 3438.
    IARC (2012). Cancer fact sheets: Colorectal cancer. Technical Report. Lyon, France:
    International Agency for Research on Cancer.
    INCA (2017). Estimate/2018 cancer incidence in Brazil. Technical Report. Rio de Janeiro, Brazil: Instituto Nacional de Câncer José Alencar Gomes da Silva. 
    John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the eleventh conference on uncertainty in artificial in-telligence (pp. 338–345). Morgan Kaufmann Publishers Inc.
    Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques.
    Mandelbrot, B. B. (1983). The fractal geometry of nature: 173. WH freeman New York. Masood, K., & Rajpoot, N. (2009). Texture based classification of hyperspectral colon biopsy samples using clbp. In Biomedical imaging: From nano to macro, 2009.
    Mohammed, H. R., & Katran, L. F. (2018). Hybrid method for detection of brain tu-mor using fuzzy c-mean clustering and discrete curve let transform. Interna-tional Journal of Applied Engineering Research, 13(3), 1670–1674.
    Naiyar, M., Asim, Y., & Shahid, A. (2015). Automated colon cancer detection using structural and morphological features. In Frontiers of information technology (fit), 2015 13th international conference on (pp. 240–245). IEEE.
    Nayak, D. R., Dash, R., Majhi, B., & Prasad, V. (2017). Automated pathological brain detection system: A fast discrete curvelet transform and probabilistic neural network based approach. Expert Systems with Applications, 88, 152–164.
    Rabidas, R., Midya, A., Chakraborty, J., Sadhu, A., & Arif, W. (2018). Multi-resolu-tion analysis using integrated microscopic configuration with local patterns for benign-malignant mass classification. In Medical imaging 2018: Computer-aided diagnosis: 10575 (p. 105752N). International Society for Optics and Photonics.
    & Faria, P. R. (2017). Features based on the percolation theory for quantification of non-hodgkin lymphomas. Computers in Biology and Medicine, 91, 135–147.
    Saraswathi, D., Dharani, D., & Srinivasan, E. (2016). An e cient feature extraction technique for breast cancer diagnosis using curvelet transform and swarm intel-ligence. In Wireless communications, signal processing and networking (WiSPNET), international conference on (pp. 441–445). IEEE.
    Saraswathi, D., & Srinivasan, E. (2017). A high-sensitivity computer-aided system for detecting microcalcifications in digital mammograms using curvelet fractal texture features. Computer Methods in Biomechanics and Biomedical Engineering, 5(4), 263–273.